光学喵-光学课堂 首页 资讯 查看内容

远摄物镜的理想光学模型

2021-12-20 11:03| 发布者:Davis| 查看:1628| 评论:0|原作者: 小小光08

摘要:本文介绍了远摄物镜的理想光学模型,包括系统构成、偏角公式修正、前后组焦距计算、相对孔径等内容。了解远摄物镜的光学特性可帮助选择合适的镜头,在航拍、望远等领域有广泛应用。
 
1.  引言
光学成像系统的总长T显然和焦距f`不一定相等,它们的比称为远摄比,定义为
                           
一般情况下,Υ>1。
密接透镜组,如双胶合、双分离和三片式等,系统总长略大于焦距,Υ≈1。
在观察远处目标时,为了获得较大的放大率,就需要采用长焦距物镜。
在一些应用中,既需要长焦距,也要求结构紧凑,比如航拍,这相当于要求Υ<1,就必须采用远摄型设计。

如上图,远摄物镜(telephoto lens)由正的前组和负的后组构成,前后组具有一定的间隔d。
一条与光轴平行的光线AB首先经过正透镜组汇聚后,再由负透镜组发散,出射光为CF`,交光轴于F`,F`就是后焦点。将CF`反向延长,交入射光与D。通过D并垂直于光轴的平面交光轴于H`,该平面就是后主面,H`就是后主点,H`F`的长度就是焦距f`。
由于正光焦度的前组和负光焦度的后组相分离,后主面被向前推到物空间中,使得系统长度比焦距小,即Υ<1。
结构紧凑的代价是前组和后组的复杂化,特别是前组,由于承担较大的光焦度,比后组更复杂。
通常前组和后组分别独立地校正轴向色差,光阑位于前组或位于前后组之间。
由于远摄物镜的角视场一般不大,彗差、畸变和倍率色差相对并不重要。
2.  远摄物镜的理想光学模型
 
1)系统构成和归一化坐标
远摄物镜由前组和后组两组透镜组成,前组合成光焦度为正,后组合成光焦度为负。
在初级近似下,我们把前组和后组分别用正的薄透镜和负的薄透镜表示,如下图:

为了便于公式推导,简化表达方式,取归一化坐标。

再设系统的焦距为沿轴方向的长度单位,归一化的系统焦距记为,则有
所有沿轴方向的量ζ和垂轴方向的量η分别满足如下的归一化条件:

上式中,f`h分别是系统真正的焦距和入射高。
 
2)偏角公式的修正及有限共轭距等效F
由薄透镜公式

得到透镜产生的偏角Δu和光焦度φ、入射高h的关系式为:

上式表示,偏角与光焦度成正比,比率正是入射高h
当物距为无限时,u=0Δu=u`,透镜的相对孔径定义为:

当物距为有限时,我们可以合理地定义透镜的有限共轭距等效F数为:

在这样的定义下,光圈数与承担的偏角仍然具有反比的关系。
 
3)前后组焦距计算
 
在理想光学模型中,系统焦距f`和远摄比Υ通常都是预先给定的,那只有前后组的间隔d这一个自由参数了,从而前后组的焦距均可以表示为d的函数。
通过理想光学模型的推导,可以得到前组和后组的焦距分别为:

这样一来,只要给定了系统焦距f`和远摄比Υ,系统前后组焦距的初始值就确定了。
 
4)前后组的相对孔径
前组的相对孔径为:

后组的相对孔径为:

5)前组和后组的间隔d
由于远摄物镜的Υ<1,后组(即负透镜)大体在系统居中的位置,这从物理的角度来看是一个合理的位置。



路过

雷人

握手

鲜花

鸡蛋

最新评论

联系客服 关注微信 访问手机版 返回顶部