学好光学设计需要学习一些基础理论,今天为大家带来的是关于自适应光学系统的一些内容,大家一起学学吧,也可以后面留言讨论! 自适应光学是补偿由大气湍流或其他因素造成的成像过程中波前畸变的最有前景的技术。 自适应光学的目的是修复大气湍流等因素对光波波前的扭曲。自适应光学首先要检测波前扭曲情况,然后通过安装在望远镜焦面后方的一块小型的可变形镜面对波前实时进行矫正。 可变形镜面后安装有促动器。自适应光学与主动光学不同,后者通过改变主镜的形状调整因重力形变等因素造成的像质扭曲,前者用于补偿大气湍流带来的影响。 安装在口径8米左右的地面大型光学天文望远镜上的可变形镜面尺寸为8到20厘米,促动器数量为数百个到数千个不等,每次调整要在0.5到1毫秒的时间内完成,否则大气抖动将造成波前扭曲情况发生改变。 自适应光学需要以很高的频率调整镜面形状,因而可变形镜面尺寸一般比较小,对材料的要求很高。曾发生过变形镜无法承受高频调整而碎裂的事故。 此外,还要求促动器的数量足够多,由此还会带来成本提高、运算量过大等一系列问题。天文望远镜上的自适应光学更多用于红外观测,而非可见光观测。可见光波段的自适应光学已经广泛用于侦察卫星的小口径望远镜上。 最显然的应用是直接利用滤镜成像。所有的自适应光学系统都提供这一基础模式,但经常配备附加的扫描滤镜(圆形可变滤波器),这样做是为了取得丰富的数据(二维的平面空间和一维的光谱)。 考虑到大气湍流是随着时间不断改变的,在短时间内获得丰富的观测资料及数据听起来就显得异常诱人。这可以利用全视场摄谱仪(IFS)做到。加拿大-法国-夏威夷望远镜 (CFHT)的CMOS系统在可见波段的观测和西班牙卡拉阿托天文台的3D在红外波段的观测是这一方面的先驱。 类似的设备同样安装于8米望远镜,尤其是安装于双子星望远镜(Gemini)的GMOS系统在可见波段的应用以及安装于甚大望远镜(VLT)的SINFONI -SPIFFI系统在红外波段的应用。 自适应光学系统有很大的技术挑战。其中包括快速低噪声的传感器(为了能使用比较昏暗的引导星来进行矫正);高能、可信且易于操作的钠激光器;超高速处理器,要求每秒的运作此时达109到1010次;可变形镜面,带宽几千赫兹和上千个触动器;大型的二级自适应透镜。后者在热波段尤其有趣,任何一小块附加的镜面都加大由设备造成的原本已经很大的热背景。 基于自然引导星的自适应光学系统正帮助现代的8到10米望远镜不断取得接近衍射极限的成像质量以及分光数据。可见光波段的改正已相当理想,但是至今仍然无法到达衍射极限。人造引导星自适应光学系统被应用于不少天文台,而且这个数字正不断的增加。但是人造引导星在极高天空覆盖率下的稳定应用仍然没有实现。MCAO技术仍在襁褓阶段。 许多最近的天文观测成果都基于新的光学观测技术。尤其是当甚大望远镜(VLT)投入使用后(干涉观测法带来了更清晰的像质),自适应光学系统显得更加重要。强大的集光能力和极小的分辨率(空间上的和光谱上的)将为未来地面天文观测带来最主要的进步。 更深入地,计划和讨论中的巨型光学望远镜(比如OWL)将依赖先进的自适应光学技术来实现全部的天文观测---在这些项目的建设初期望远镜就和自适应光学系统融为一体。 自适应光学系统开发者的工作是令人畏惧的——平面波波阵面透过了20千米的大气湍流层,穿过大型天文望远镜,产生了几微米的相位差。自适应光学系统必须通过分析有限的数据在每一毫秒内做出新的修正。另一个复杂的因素是:适用于自适应光学的视场大小--等晕角是相当小的(在可见波段只有几角秒)。 考虑到相对较宽的波段和极小的天空覆盖率,自适应光学采用了一块直径在8到20厘米小型可变形镜面,这块镜面被安放在望远镜的焦点后方,不过近期来采用大型可变形镜面的可能也越来越大了。 选择造成形变的触动器的数量必须综合考虑改正度、观测波段、参考星的选择以及可用预算。举例来说,对一台口径8米的望远镜在可见光波段(比如0.6/265m)做出近乎完美的改正需要大约6400个触动器,而相同的情况下在波长为2/265m时只需要250个触动器。 大数量的触动器意味着波前传感器(用来测量波前扭曲的状况)上需要同样较大数量的图像探测器(每个图像探测器对应一块二级透镜),这说明如果要在可见光波段进行修正,参考星的亮度应该比在红外波段进行修正时大25倍左右。 大部分现代天文观测系统被设计用来提供红外波段附近(1 到2 /265m)接近衍射极限的星像,同时对可见波段的星像进行部分修正。不过,美国的一些卫星军事系统也提供可见波段的完全修正(至少是口径1米的望远镜)。 Zemax Zemax这是一套综合性的光学设计软件。它集成了光学系统所有的概念、设计、优化、分析、公差分析和文件整理功能。Zemax所有的这些功能都有一个直观的接口,它们具有功能强大、灵活、快速、容易使用等优点。 |