6. 结论
与商用光学软件的优化相比,田口和模糊方法的扩展优化对于研究中使用的液体组件的L型变焦镜头具有以下优点:
1. 三个变焦位置的MTF平均消除9.92%,RI为±0.19%,如表11所示。
2. 本研究中获得的参数的最佳组合,可以解决RMCO方法的缺陷(当没有较高的贡献控制因子时,对于多目标优化效率不显著)和PCA和模糊方法(当第一个主要成分的特征值小于1时,最优设计参数的效果将不显著)。
3. 与 [4] 相比,通过将田口方法与模糊方法相结合获得的参数的最佳组合是 RMCO 的一组 Pareto 最优设计解决方案,在最短的总长度条件下,其 RI 值(每个场的均值)更好。
4. 从研究和分析中可以得出结论,建议的最佳设计可以减少变异。因此,最佳设计是稳健的。
References
[1] S. Kuiper, B.H.W. Hendriks, J.F. Suijver, I. Deladi, I. Helwegen, Zoom camera
based on liquid lenses, MOEMS and miniaturized systems VI, Proc. SPIE 6466
(2007) 64660F.
[2] J.H. Sun, Y.C. Fang, B.R. Hsueh, J. MacDonald, Study of extended optimization for
U-type 2× zoom optics with free-form surface, Opt. Lasers Eng. 48 (3) (2010)
368–379.
[3] J.H. Sun, B.R. Hsueh, Y.C. Fang, J. MacDonald, Optical design and extended multiobjective
optimization of miniature L-type optics, J. Opt. A: Pure Appl. Opt. 11
(10) (2009) 1–11.
[4] C.C. Hu, Y.C. Fang, H.W. Su, W.T. Lin, H.C. Lin, Y.C. Lin, Chromatic Aberration
Elimination for 3×
Zoom Lens Design with Liquid Lens via Genetic Algorism,
SPIE, Chengdu, China, 2007, July, pp. 1–10.
[5] C.M. Tsai, Y.C. Fang, Miniature lens design and optimization with liquid lens
element via genetic algorithm, J. Opt. A 10 (2008) 075304.
[6] S. Kuipera, B.H.W. Hendriks, Variable-focus liquid lens for miniature cameras,
Appl. Phys. Lett. 85 (2004) 16.
[7] F.C. Wippermann, P. Schreiber, A. Bruer, P. Craen, Bifocal liquid lens zoom
objective for mobile phone applications, Proc. SPIE 6501 (2007) 650109.
[8] J.H. Sun, B.R. Hsueh, Y.C. Fang, J. MacDonald, C.C. Hu, Optical design and multiobjective
optimization of miniature zoom optics with liquid lens element, Appl.
Opt. 48 (9) (2009) 1741–1757.
[9] L.I. Tong, C.T. Su, Multi-response robust design by principal component analysis,
Total Qual. Manage. 8 (6) (1997) 409–416.
[10] T.J. Ross, Fuzzy Logic with Engineering Applications, Wiley, 1995.
[11] V. Cherkassky, F. Mulier, Learning from Data: Concepts Theory and Methods,
Wiley, 1998.
[12] Y.C. Fang, Y.F. Tzeng, S.X. Li, A Taguchi PCA fuzzy-based approach for the multiobjective
extended optimization of a miniature optical engine, J. Phys. D: Appl.
Phys. 41 (2008) 1–16.
[13] J. Antony, Multi-response optimization in industrial experiments using
Taguchi’s quality loss function and principal component analysis, Qual Reliab.
Eng. Int. 16 (2000) 3–8.
[14] P.J. Ross, Taguchi Techniques for Quality Engineering, McGraw-Hill, New York,
1996.
[15] Y.W. Wu, Taguchi Methods for Robust Design, 1st ed., ASME Press, New York,
2000, p. 270.
[16] C.T. Su, Quality Engineering, Chinese Society for Quality, Taipei, Taiwan, 2006.